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Abstract Cluster analysis of genome-wide expression data from DNA microarray
hybridization studies is a useful tool for identifying biologically relevant gene group-
ings (DeRisi et al. 1997; Weiler et al. 1997). It is hence important to apply a rigorous
yet intuitive clustering algorithm to uncover these genomic relationships. In this study,
we describe a novel clustering algorithm framework based on a variant of the General-
ized Benders Decomposition, denoted as the Global Optimum Search (Floudas et al.
1989; Floudas 1995), which includes a procedure to determine the optimal number of
clusters to be used. The approach involves a pre-clustering of data points to define an
initial number of clusters and the iterative solution of a Linear Programming prob-
lem (the primal problem) and a Mixed-Integer Linear Programming problem (the
master problem), that are derived from a Mixed Integer Nonlinear Programming
problem formulation. Badly placed data points are removed to form new clusters,
thus ensuring tight groupings amongst the data points and incrementing the number
of clusters until the optimum number is reached. We apply the proposed clustering
algorithm to experimental DNA microarray data centered on the Ras signaling path-
way in the yeast Saccharomyces cerevisiae and compare the results to that obtained
with some commonly used clustering algorithms. Our algorithm compares favorably
against these algorithms in the aspects of intra-cluster similarity and inter-cluster
dissimilarity, often considered two key tenets of clustering. Furthermore, our algo-
rithm can predict the optimal number of clusters, and the biological coherence of the
predicted clusters is analyzed through gene ontology.
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1 Introduction

The aim of cluster analysis is to establish a set of clusters such that the data points in
a cluster are more similar to one another than they are to those in other clusters. The
clustering problem is old, can be traced back to Aristotle, and has already been stud-
ied quite extensively by 18th century naturalists such as Buffon, Cuvier, and Linne
(Hansen and Jaumard 1997). Since then, clustering has been used in many disciplines,
such as market research, social network analysis, and geology, thus reflecting its broad
appeal and utility as a key step in exploratory data analysis (Jain et al. 1999). In market
research for instance, cluster analysis is widely used when working with multivariate
data from surveys and test panels. Market researchers use cluster analysis methods to
segment and determine target markets, and position new products. Cluster analysis is
also used in the service of market approaches to the establishment of business enter-
prise value. Johnson (2001) addresses the potential role and utility of cluster analysis
in transfer pricing practices. Given the importance of clustering, a substantial num-
ber of books, such as Duran and Odell (1974), Hartigan (1975), and Jain and Dubes
(1988), as well as review papers, such as Xu and Wunsch (2005) have been published
on this subject.

In biology, clustering provides insights into transcriptional networks, physiological
responses, gene identification, genome organization, and protein structure. Genome-
wide measurements of mRNA expression levels have provided an efficient and com-
prehensive means of gathering information on genetic functions and transcriptional
networks. However, extracting useful information from the resulting large data sets
first involves organizing genes by their pattern and/or intensity of expression in order
to define those genes that are co-regulated. Such information provides a basis for
extracting regulatory motifs for transcription factors driving the diverse expression
patterns, allowing assembly of predictive transcriptional networks (Beer and Tava-
zoie 2004). This information also provides insights into the functions of unknown
genes, since functionally related genes are often co-regulated (Troyanskaya et al.
2003). Furthermore, clustered array data provides identification of distinct categories
of otherwise indistinguishable cell types, which can have profound implications in pro-
cesses such as disease progression (Sorlie et al. 2003). In sequence analysis, clustering
is used to group homologous sequences into gene families. Examining characteristic
DNA fragments helps in the identification of gene structures and reading frames. In
protein structure prediction, clustering the ensemble of low energy conformers is used
to identify the top suggested protein structures.

Two popular similarity metrics are correlation and Euclidean distance. The latter
is often popular, since it is intuitive, can be described by a familiar distance function,
and satisfies the triangular inequality. Clustering methods that employ asymmetric dis-
tance measures (Pipenbacher et al. 2002; Leisch et al. 1998) are probably more difficult
to intuitively comprehend even though they may be highly suited to their intended
applications. The earliest work on clustering emphasized visual interpretations for the
ease of study, resulting in methods that utilize dendograms and color maps (Claverie
1999). Other examples of clustering algorithms include: (a) Single-Link and Com-
plete-Link Hierarchical Clustering (Sokal and Michener 1958; Jain and Dubes 1988),
(b) K-Means Algorithm and its family of variants, such as the K-Medians (Hartigan
and Wong 1979; Zhang et al. 1999; Zhang 2000; Likas et al. 2003), (c) Reformulation
Linearization-based Clustering (Sherali and Desai 2005a; Adams and Sherali 1990),
(d) Fuzzy Clustering (Ruspini 1969; Dunn 1973; Bezdek 1981; Sherali and Desai
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2005b), (e) Quality Cluster Algorithm (QTClust) (Heyer et al. 1999), (f) Graph-
Theoretic Clustering (Zahn 1971; Wu and Leahy 1993; Gower and Ross 1969), (g)
Mixture-Resolving Clustering Method (Dempster et al. 1977; Jain et al. 1999), (h)
Mode Seeking Algorithms (Jain et al. 1999), (i) Artificial Neural Networks for Clus-
tering (Kohonen 1984; Carpenter and Grossberg 1990) such as the Self-Organizing
Map (SOM) (Kohonen 1997) and a variant that combines the SOM with hierarchi-
cal clustering, the Self-Organizing Tree Algorithm (SOTA) (Herrero et al. 2001) (j)
Information-Based Clustering (Dhillon and Guan 2003; Tishby et al. 1999; Slonim
et al. 2005), (k) Stochastic Approaches (Kirkpatrick et al. 1983; Metropolis et al.
1953; Lukashin and Fuchs 2001).

In this paper, we present a novel Mixed-Integer Nonlinear Programming (MIN-
LP)-based clustering algorithm, the Global Optimal Search with Enhanced Position-
ing (EP_GOS_Clust), which is robust yet intuitive. This algorithm is significant in
that it is able to progressively identify and weed out outlier data points. Also, our
algorithm contains a convenient method to predict the optimal number of clusters.
We compare our algorithm with several approaches commonly used in clustering bio-
logical microarray data, namely K-methods, QTClust., SOM, and SOTA. We use two
assessment criteria to assess the results: the intra-cluster and inter-cluster error sums.
We also examine the difference between the two error sums. In an optimal cluster
configuration, the intra-cluster error sum is to be minimized and the inter-cluster error
sum to be maximized. In this respect, we show that our proposed algorithm compares
favorably. We also incorporate a methodology to predict the optimal number of clus-
ters. In addition, in view of the context of the particular test dataset used, we compare
the strength of biological coherence uncovered by the various approaches using Gene
Ontology resources, and also the level of correlation between data points with the
same cluster. We base our comparative study on actual DNA microarray data, though
our algorithm can be readily utilized for data from other applications.

2 Methods

2.1 Experimental data

For the clustering studies described in this report, we used experimental microarray
data derived from a study in the role of the Ras/protein kinase A pathway (PKA)
on glucose signaling in yeast (Wang et al. 2004). These experiments analyzed mRNA
levels in samples extracted from cells at various times following stimulation by glucose
or following activation of either Ras2 or Gpa2, which are small GTPases involved in
the metabolic and transcriptional response of yeast cells to glucose (Schneper et al.
2004). These experiments were performed in wild type cells and cells defective in PKA
activity. Clustering these microarray data has proven to be a critical step in using the
data to develop a predictive model of a topological map of the signaling network
surrounding the Ras/PKA pathway (Lin et al. 2003).

Levels of RNA for each of the 6,237 yeast genes in each of the RNA samples
from the above experiments were measured using Affymetrix microarray chips and
analyzed by the Affymetrix software. Each of the eight test and control experiments
consisted of four time points over a hour period, yielding 32 data points for each of
the 6,237 genes. We used the Affymetrix MicroArray Suite 5.0, which analyzes the
consensus of intensities of hybridization of an RNA to the collection of perfect match



326 J Glob Optim (2007) 39:323–346

probes for a gene on the array, relative to the intensities of hybridization to single
mismatch probes, to further determine whether a signal for a specific RNA in a sample
was reliable (P or present), unreliably low (A or absent), or ambiguous (M). Before
clustering the array data, we filtered the data to remove unreliable data. In particular,
we retained all genes for which all the time points were present (4,105 genes), all the
genes for which greater than 50% of the time points were present, and all the genes for
which the present/absent calls exhibited a biologically relevant pattern (e.g. PAAA
for the four time points in the experiment, suggested repression of gene expression
over the course of the experiment). In all, we retained 5,652 genes. The expression
patterns for these genes are then z-normalized over each gene.

2.2 Theoretical and computational framework

2.2.1 Notation

We denote the measure of distance for a gene i, for i = 1, . . ., n having k features (or
dimensions), for k = 1, . . ., s as aik. Each gene’s 32-time point expression pattern is
transformed into a 24-dimensional vector, for which each vector element indicates
the change in normalized expression level between time points for each gene, aik.
Each gene is to be assigned to only one (hard clustering) of c possible clusters, each
with center zjk, for j = 1, . . ., c. The binary variables wij indicates whether gene i falls
within cluster j (wij = 1, if yes; wij = 0, if no). We then pre-cluster the data to expe-
dite the computational resources required to solve the hard clustering problem by
(i) identifying genes with similar experimental responses, and (ii) removing outliers
deemed not to be significant to the clustering process. To provide just adequate dis-
criminatory characteristics so that the genes can be pre-clustered properly, we reduce
the expression vectors into a set of representative variables {+, o, −}. The (+) variable
represents an increase in expression level compared to the previous time point, the
(−) variable represents a decrease in expression level from the previous time point,
and the (o) variable represents an expression level that does not vary significantly
(±10% of change across the time points). We could have used other comparative
metrics such as distance or correlation to pre-cluster the genes, though at this first
pass stage, using the representative variables {+, o, −} lends more ease and produces
pre-clusters of similar quality. Obviously the pre-clustering process of choice can differ
across datasets to be clustered, and we choose the approach most expeditious to our
data of interest.

2.2.2 Hard clustering by global optimization

The global optimization approach seeks to minimize the Euclidean distances between
the data points and the centers of their assigned clusters as:

Minimize
wij,zjk

n∑

i=1

c∑

j=1

s∑

k=1

wij
(
aik − zjk

)2 (Problem 1)

s.t.
c∑

j=1

wij = 1, ∀i = 1, . . . , n

wij are binary variables, zjk are continuous variables
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There are two sets of variables in the problem, wij and zjk. While the bounds of wij
are clearly 0 and 1, that of zjk are obtained by observing the range of aik values.

zL
jk = min {aik} , ∀k = 1, . . . , s

zU
jk = max {aik} , ∀k = 1, . . . , s

The pre-clustering work suggests that some of the genes need only be restricted to
some number of known clusters, since it can be determined (for instance by distance
and correlation metrics) that certain genes are exceedingly dissimilar from some of
the pre-clusters and thus have virtually zero probability of being clustered there. This
restriction can be described by introducing an additional binary parameter suitij. A
data point deemed to belong uniquely to just one cluster will only have suitij = 1 for
only one value of j and zero for the others, whereas a data point restricted to a few
clusters will have suitij = 1 for only those clusters. This reduces the computational
demands of the problem. The introduction of the suitij parameters also obviates the
need for constraints that prevent the redundant re-indexing of clusters. The objective
function in Problem 1, when expanded is:

c∑

j=1

wij

n∑

i=1

s∑

k=1

a2
ik −

n∑

i=1

c∑

j=1

s∑

k=1

aikwijzjk +
c∑

j=1

s∑

k=1

zjk

n∑

i=1

wij
(
zjk − aik

)

Together with the necessary first-order optimality condition:

n∑

i=1

wij
(
zjk − aik

) = 0, ∀j, ∀k

(i.e., the vector distance sum of all genes within a cluster to the cluster center should
be intuitively zero), and the constraint that each gene is allowed to belong to only one

cluster,
(

i.e.
∑c

j=1 wij = 1
)

, the formulation becomes:

Minimize
wij,zjk

n∑

i=1

s∑

k=1

a2
ik −

n∑

i=1

c∑

j=1

s∑

k=1

(suitij)(aikwijzjk) (Problem 2)

s.t. (suitij)

(
zjk

n∑

i=1

wij −
n∑

i=1

aikwij

)
= 0, ∀j, ∀k

c∑

j=1

(suitij)wij = 1, ∀i

1 ≤
n∑

j=1

(suitij)wij ≤ n − c + 1

wij = 0 − 1, ∀i, ∀j

zL
jk ≤ zjk ≤ zU

jk,∀j, ∀k

The first set of constraints are the necessary optimality conditions, the second demand
that each gene can belong to only one cluster, and the third state that there is at
least one and no more than (n − c + 1) data points in a cluster. Note also that the∑n

i=1
∑s

k=1 a2
ik term in the objective function of Problem 2 is a constant and can be
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dropped, though for the sake of completeness we will retain the term throughout the
subsequent formulations in the paper. Problems 1 and 2 are Mixed Integer Nonlinear
Programming (MINLP) problems with bilinear terms in the objective function and
the first set of constraints. To handle the nonlinearities formed by the product of vari-
ables wij and zjk, new variables yijk along with additional constraints (Floudas 1995)
are defined as follows:

yijk = wijzjk (1)

zjk − zU
jk

(
1 − wij

) ≤ yijk ≤ zjk − zL
jk

(
1 − wij

)
(2)

zL
jkwij ≤ yijk ≤ zU

jkwij, ∀i, ∀j, ∀k (3)

The introduction of yijk and the additional constraints reduces the formulation to an
equivalent Mixed-Integer Linear Programming (MILP) problem, but results in an
inordinately large number of variables. Thus, there is a need for new approaches to
address large datasets.

2.2.3 The GOS algorithm for clustering

The introduction of the bilinear variable yijk results in a large number of variables to
be considered. In a problem with over 2000 data points, each having 24 features, to be
placed into over 380 clusters, the number of variables to be considered numbers over
18 million. Without introducing the yijk variables will leave the problem in a nonlinear
form. Mixed-integer nonlinear programming (MINLP) problems are considered ex-
tremely difficult. Theoretical advances and prominent algorithms for solving MINLP
problems are addressed in Floudas (1995), Floudas (2000), and Floudas et al. (2005).

The general form of a MINLP problem is:

Z = min
x,y

C(x, y) (Problem 3)

s.t. h (x, y) = 0

g (x, y) ≤ 0

y ∈ (0, 1)m, x ∈ �n

Here, x represents the continuous variables in real space and y, the integer variables.
For simplicity here, y is assumed to be binary. In addition, C(x, y) is the objective
function, h(x, y) represents the set of equality constraints, and g(x, y) is the set of
inequality constraints.

We propose here a variant of the Generalized Benders Decomposition (GBD)
algorithm (Geoffrion 1973; Floudas et al. 1989), denoted as the Global Optimum
Search (GOS). For brevity, only a outline of the GOS algorithm is presented here,
while a more detailed description can be found in Floudas et al. (1989) and Floudas
(1995). Successful applications of the decomposition principles of the GOS approach
in process synthesis are reported in Floudas and Grossman (1987), Floudas and Anas-
tasiadis (1988), Paules and Floudas (1989), Ciric and Floudas (1989), Aggarwal and
Floudas (1990), and Kokossis and Floudas (1994).

In brief, the GBD method decomposes the problem into a primal problem and
the master problem. The former optimizes the continuous variables while fixing the
integer variables and provides an upper bound solution, while the latter optimizes the
integer variables while fixing the continuous variables and provides a lower bound



J Glob Optim (2007) 39:323–346 329

solution. The two sequences of upper and lower bounds are iteratively updated until
they converge in a finite number of iterations. In addition, the GOS algorithm as-
sumes that (i) the optimal solution of the primal problem together with the relevant
Lagrange multipliers can be used to determine the support functions, (ii) f (x, y) and
g(x, y) are convex functions in y for every fixed x, and (iii) h(x, y) are linear functions
in y for every x. An outline of the GOS algorithm is as follows:

Step1—Solving the primal problem
The primal problem results from fixing the binary variables to a particular 0–1 combi-
nation. Here, wij is fixed and zjk is solved from the resultant linear programming (LP)
problem. In addition, the solution also includes the relevant Lagrange multipliers.
The objective function obtained is the upper bound solution. The general form of the
feasible problem is:

Z = min
x

C(x, yk) (Problem 4)

s.t. h
(

x, yk
)

= 0

g
(

x, yk
)

≤ 0

x ∈ �n

If the primal problem is found to be infeasible, the inactive (i.e., inequality) constraints
are relaxed by introducing slack variables α and then solving for α, as well as zjk and
the Lagrange multipliers. In this event, no new upper bound solution is found. The
infeasible problem to be solved has the form:

min
∑

α (Problem 5)

s.t. h
(

x, yk
)

= 0

g
(

x, yk
)

≤ α, one α value for each inactive constraint

α ≥ 0

Step 2—Solving the relaxed master problem
The master problem is essentially the problem projected onto the y-space (i.e., that
of the binary variables). To expedite the solution of this projection, the dual repre-
sentation of the master is used. This dual representation is in terms of the supporting
Lagrange functions of the projected problem. It is assumed that the optimal solution
of the primal problem as well as its Lagrange multipliers can be used for the deter-
mination of the support function. Also, the support functions are gradually built up
over each successive iteration. The relaxed master problem to be solved is hence:

min
y,µB

µB (Problem 6)

s.t. µB ≥ L(xk, y, λk, µk), k = 1, K

0 ≥ L(xl, y, λ
l
, µl), l = 1, L

L(xk, y, λk, µk) = f (xk, y) + λkh(xk, y) + µkg(xk, y)

L(xl, y, λ
l
, µl) = λ

l
h(xl, y) + µlg(xl, y)

In accordance to the general format of the problem, f (x, y) is the objective function,
h(x, y) are the active constraints, and g(x, y) are the inactive constraints. ‘x’ represents
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the solutions of the continuous variables (i.e., zjk) from the primal problem and ‘y’
represents the binary variables (i.e., wij) to be determined in the relaxed master. ‘λ’
represents the Lagrange multipliers for the active constraints and ‘µ’ represents the
Lagrange multipliers for the inactive constraints. The superscript ‘k’ represents values
from the feasible primal problems and the superscript ‘l’ (and the over-bar) represents
values from the infeasible primal problems. The master problem is to be solved as a
MIP (mixed integer programming) problem.

The solution loop then returns to Step 1 and the process is repeated. For each
excursion into Step 1, the primal could be either feasible or infeasible.

With each successive iteration, a new support function is added to the list of con-
straints for the master problem. Thus in a sense, the support functions for the master
problem build up with each iteration, forming a progressively tighter envelope and
gradually pushing up the lower bound solution until it converges with the upper bound
solution.

Since fixing x to the solution of the corresponding primal problem may not neces-
sarily produce valid support functions, the master solution obtained at each iteration
is checked against the current lower bound solution so that the latter is updated only
if the master solution is higher than the current lower bound solution.

With fixed starting values for wij, the primal problem becomes:

Minimize
zjk

n∑

i=1

s∑

k=1

a2
ik −

n∑

i=1

c∑

j=1

s∑

k=1

aikw∗
ijzjk (Problem 7.1)

s.t. zjk

n∑

i=1

w∗
ij −

n∑

i=1

aikw∗
ij = 0, ∀j,∀k

zL
jk ≤ zjk ≤ zU

jk, ∀j, ∀k

The primal problem is a Linear Programming (LP) problem. All the other constraints
drop out since they do not involve zjk, which are the variables to be solved in the
primal problem. Besides zjk, the Lagrange multipliers λm

jk for each of the constraints
above is obtained. The objective function is the upper bound solution. These are
inputted into the master problem, which becomes:

min
wij,µB

µB (Problem 7.2)

such that µB ≥
n∑

i=1

s∑

k=1

a2
ik −

n∑

i=1

c∑

j=1

s∑

k=1

aikwijz∗
jk

+
c∑

j=1

s∑

k=1

λm∗
jk

(
z∗

jk

n∑

i=1

wij −
n∑

i=1

aikwij

)
, m = 1, M

∑

j

= 1cwij = 1, ∀i

1 ≤
n∑

j=1

wij ≤ n − c + 1, ∀j

wij = 0 − 1, ∀i, ∀j
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The master problem solves for wij and µB, and results in a lower bound solution (i.e.,
the objective function). The master problem is a Mixed Integer Linear Programming
(MILP) problem. The wij solutions are cycled back into the primal problem and the
process is repeated until the solution converges. Thus, there is no longer a need for the
variables yijk, which substantially reduces the number of variables to be solved. Also,
after every solution of the master problem, where a solution set for wij is generated,
an integer cut is added for subsequent iterations to prevent redundantly considering
that particular solution set again. The cut is expressed as:

n∑

i∈{n|wij=1 }
wij −

n∑

i∈{n|wij=0 }
wij ≤ n − 1 (4)

Note that the initial condition wij for the primal problem can be generated either by
solving the above problem as a relaxed MINLP problem or by randomly generating
starting wij values. For the former, the wij solution is then rounded up and used as
the initial condition for the GOS algorithm. It is found that well over 95% of the wij
solution from the MINLP problem adopt [0,1] solutions anyway. In addition, if it is not
certain that the initial wij values form an optimal solution, such as the case of randomly
generated wij values, it is then not included in subsequent integer cuts. It is important
to note that while the GOS algorithm tends to give good optimal solutions, it does
not have a theoretical guarantee of returning a globally optimum solution. Hence the
issue of providing the algorithm with a quality initialization point is important and
will be addressed later in the paper. Note also that in a typical GBD algorithm, there
may be an infeasible primal problem, for which the problem statement would have
to be reformulated accordingly. In this case, since there is only one set of continuous
variable (i.e., zjk) to be solved in the primal problem, and there is always a feasible
assignment of points to clusters, leading to the calculation of the cluster centers, all
primal problems are feasible.

2.2.4 Determining the optimal number of clusters

Most clustering algorithms do not contain screening functions to determine the opti-
mal number of clusters. Yet this is important to evaluate the results of cluster analysis
in a quantitative and objective fashion. On the other hand, while it is relatively easy
to propose indices of cluster validity, it is difficult to incorporate these measures into
clustering algorithms and appoint thresholds on which to define key decision values
(Jain and Dubes 1988; Halkidi et al. 2002). Some of the indices used to compute clus-
ter validity include the Dunn’s validity index (Dunn 1974), the Davis-Bouldin validity
index (Davies and Bouldin 1979), the Silhouette validation technique (Rousseeuw
1987), the C index (Hubert and Schultz 1976), the Goodman–Kruskal index (Good-
man and Kruskal 1954), the Isolation index (Pauwels and Frederix 1999), the Jaccard
index (Jaccard 1912), and the Rand index (Rand 1971). We note that the optimal
number of clusters occurs when the inter-cluster distance is maximized and the intra-
cluster distance is minimized. We adapt the concept of a clustering balance (Jung et al.
2003), where it has been shown to have a minimum value when intra-cluster similarity
is maximized and inter-cluster similarity is minimized. This provides a measure of how
optimal is a certain number of clusters used for a particular clustering algorithm. We
introduce the following:
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Global Center, zo
k = 1

n

n∑

i=1

aik, ∀k (5)

Intra-cluster error sum, � =
n∑

i=1

c∑

j=1

s∑

k=1

wij
∥∥aik − zjk

∥∥2
2 (6)

Inter-cluster error sum, � =
c∑

j=1

s∑

k=1

∥∥zjk − zo
k

∥∥2
2 (7)

For agglomerative clustering, the intra-cluster error sum increases as the clustering
progresses whilst the inter-cluster error sum decreases. For a divisive algorithm, the
opposite trend holds. Based on this, Jung et al. (2003) proposed a clustering balance
parameter, which is the α-weighted sum of the two error sums.

Clustering Balance, ε = α� + (1−α)� (8)

We note here that the rightful α-ratio is 0.5. There are two ways to come to this con-
clusion. We note that the factor α should balance the contributive weights of the two
error sums to the clustering balance. At extreme cluster numbers, that is, the largest
and smallest number possible, the sum of the intra-cluster and inter-cluster error sums
at both cluster numbers should be balanced. In the minimal case, all the data points
can be placed into a single cluster, in the case of which the inter-cluster error sum is
zero and the intra-cluster error sum can be calculated with ease. In the maximal case,
each data point forms its own cluster, in the case of which the intra-cluster error sum
is zero and the inter-cluster error sum can be easily found. Obviously the intra-cluster
error sum in the minimal case and inter-cluster error sum in the maximal case are
equal, suggesting that the most appropriate weighting factor to use is in fact 0.5. The
second approach uses a clustering gain parameter proposed by Jung et al. (2003).
This gain parameter is the difference between the decreased inter-cluster error sum
γj compared to the initial stage and the increased intra-cluster error sum λj compared
to the initial stage, and is given by.

γjk =
n∑

i=1

wij
∥∥aik − zo

k

∥∥2
2 − ∥∥zjk − zo

k

∥∥2
2 , ∀j, ∀k (9)

λjk =
n∑

i=1

wij
∥∥aik − zjk

∥∥2
2, ∀j, ∀k (10)

Gain, �jk =
n∑

i=1

wij
∥∥aik − zo

k

∥∥2
2 − ∥∥zjk − zo

k

∥∥2
2 −

n∑

i=1

wij
∥∥aij − zjk

∥∥2
2, ∀j,∀k (11)

With the identities:

n∑
i=1

wijaik = njzjk, ∀j, ∀k

n∑
i=1

wij = nj, ∀j
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where nj denotes the number of data points in cluster j, (11) can be simplified to:

�jk = (
nj − 1

) ∥∥zo
k − zjk

∥∥2
2 , ∀j, ∀k (12)

∴ � =
c∑

j=1

s∑

k=1

(
nj − 1

) ∥∥zo
k − zjk

∥∥2
2 (13)

Jung et al. (2003) showed the clustering gain to have a maximum value at the optimal
number of clusters, and demonstrated that the sum total of the clustering gain and
balance parameters is a constant. As can be seen from the following derivation, this
is only possible if the α-ratio is 0.5.

Sum of Clustering Balance and Clustering Gain,
� = ε + �

= � + � + �
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2, which is a constant for any given dataset. (14)

These derivations suggest that for any clustering algorithm including that using the
GOS algorithm, one can deduce the optimal number of clusters by performing multi-
ple repetitions of the clustering process over a suitably large range of cluster numbers
and watching for the clustering gain or clustering balance turning points.

2.3 Proposed algorithm

The discussion thus far points to the GOS formulation as a suitable clustering algo-
rithm. But for it to be effective, the formulation must be provided with a good initial-
ization point. Also, we want to expeditiously incorporate the approach to predict the
optimal number of clusters into a clustering algorithm. With these considerations in
mind, we propose the following GOS clustering algorithm with enhanced data point
positioning (EP_GOS_Clust).

2.3.1 Gene pre-clustering

We choose to pre-cluster genes based on the feature pattern representation of their
expression vectors. This conforms well to the intuitive notion that two co-expressed
genes similarly shaped expression patterns, rather than comparing the magnitudes of
the two series of measurements (Eisen et al. 1998). In our 24-dimensional expres-
sion vectors, only genes with two or less different expression vector points from one
another are pre-clustered together. Many of these genes end up belonging to more
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than one pre-cluster. Since their specific membership is in question, we take the clus-
ters formed only by uniquely clustered genes. As a result, we find 388 genes uniquely
placed into 157 clusters.

2.3.2 Iterative clustering

We let the initial cluster set be defined by the unique genes pre-clustered in the pre-
vious step and compute the cluster centers. We next compute the distance between
each of the remaining genes and these initial centers and as a good initialization point
placed these genes into the nearest cluster based on:

Min

{
s∑

k=1

(
aik − zinitial

jk

)2
, ∀j

}
, ∀i /∈ unique

We then create a rank-order list for each of the remaining genes for its distance to
each of the initial clusters, and for each gene allow its suitability in 4 nearest clusters
via its suitij parameters. For this particular dataset, a separate study (results not shown
here) has indicated that the clustering results cease to change significantly once the
number of suitij values for each gene exceed 4. The initialization point and the suitij
parameter assignments are then utilized in the primal problem of the GOS algorithm
as described in Problem 7.1 to solve for zjk. These, together with the Lagrange multi-
pliers, are inputted into the master problem (Problem 7.2) to solve for wij. The primal
problem gives an upper bound solution and the master problem provides a lower
bound. The optimal solution is obtained when the lower and upper bounds converge.
Then, the worst placed gene based on:

Max

⎧
⎨

⎩

c∑

j=1

s∑

k=1

(
aik − zupdated

jk

)2
, ∀i /∈ unique

⎫
⎬

⎭

is removed and used as a seed for a new cluster with center znew. This gene has
already been subjected to the initial search for membership so there is no reason
for it to belong to any one of the older clusters. Based on znew and zupdated (up-
dated without the worst-placed gene), the iterative steps are repeated, by selecting
a new initialization point, assignment suitij parameters, and running the GOS algo-
rithm again. With these iterations, the number of clusters builds up from the initial
number defined by the pre-clustering work, until the optimal number of clusters is
attained. Our proposed clustering methodology can be summarized by the schematic
in Fig. 1.

3 Results and discussion

3.1 Description of comparative study

We will work with the 5,652 genes obtained previously. The clustering algorithms
to be compared are (a) K-Means, (b) K-Medians, (c) K-Corr, where the Pearson
correlation coefficient is the distance metric, (d) K-CityBlock, where the distance
metric is the city block distance, or the ‘Manhattan’ metric, which is akin to the north-
south or east-west walking distance in a place like New York’s Manhattan district,
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Fig. 1 Schematic flowchart of the EP_GOS_Clust algorithm. Although the formulation in the paper
has been notated for DNA microarray data, the algorithm framework can be adapted for clustering
any numeric data

(e) K-AvePair, where the cluster metric is the average pair-wise distance between
members in each cluster, (f) QTClustering, (g) SOM, (h) SOTA, (i) GOS I, where
genes with up to 7 different feature points are pre-clustered, initial clusters are de-
fined by uniquely placed genes, and each gene is placed into its nearest cluster as the
initialization point, and (j) EP_GOS_Clust, for which genes are pre-clustered if they
have 2 or less different feature points and can be uniquely clustered. For convenience,
the comparison involving SOM and SOTA will only be carried out at the optimal
cluster number predicted for the EP_GOS_Clust. Since the K-family of clustering
approaches are sensitive to the initialization point, we run each 25 times and use only
the best result.
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Fig. 2 Comparison of intra-cluster error sum from the clustering of 5,652 Yeast genes based on DNA
expression levels in glucose pathway experiments, using different clustering algorithms. Each gene
contains 36 time points, or a 24-dimensional feature vector. The intra-cluster error sum measures the
extent of dissimilarity between objects within the same cluster, and should be minimized

3.2 Intra-cluster error sum

Data points in the same cluster should be as similar as possible; hence the intra-cluster
error sum should be minimized. From Fig. 2, it can be seen that the best performing clus-
tering algorithms are the K-Medians and the EP_GOS_Clust. In fact, other than within
regionsof lowclusternumber, theEP_GOS_Clustoutperformsall theotheralgorithms.
One reason for the efficacy of the K-Medians at low cluster numbers is due to it using the
datamediantocomputeclustercenters.Thiscircumventsthedistortingeffectsofoutlier
data points, which particularly affects algorithms that use random initialization points,
such as K-Means. It is also notable that the GOS I performs admirably even though the
pre-clustering allows genes with up to 30% difference in feature points to be grouped
together. This reflects the rigor of the subsequent steps in assigning suitij parameters,
the GOS clustering, and the process of incrementing the cluster number. The clustering
results also show up the inadequacy of QTClust. It groups genes together till the clus-
ter reaches a pre-determined tolerance. The algorithm then determines the number of
clusters to use. A different tolerance criterion needs to be specified in order to obtain a
different cluster number. This implies that the process of probing for the optimal num-
ber of clusters using QTClust uses clusters of inconsistent qualities. We further look in
detail at the clustering results obtained by QTClust and note that genes with up to 14
different feature points (∼60% of all feature points) are in fact clustered together.

3.3 Inter-cluster error sum

This error sum indicates how different clusters are from one another and is given by:
c∑

j=1

s∑

k=1

(
zjk − zo

k

)2
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Fig. 3 Comparison of inter-cluster error sum from the clustering of 5,652 yeast genes based on DNA
expression levels in glucose pathway experiments, using different clustering algorithms. Each gene
contains 36 time points, or a 24-dimensional feature vector. The inter-cluster error sum measure the
extent of dissimilarity between different clusters and should be maximized

This is another measure of cluster quality, and it is desirable for the error sum to be
maximized. The inter-cluster error sum for the clustering of 5,652 genes is shown in
Fig. 3. Here, the EP_GOS_Clust outperforms all the other cluster algorithms. In using
the intra-cluster error sum as the objective function and demanding that the worst-fit-
ting gene be extracted to seed new clusters, the EP_GOS_Clust explicitly seeks a min-
imal intra-cluster error sum and implicitly searches for a configuration that maximizes
the inter-cluster error sum. Note that while K-Medians does well in obtaining a min-
imal intra-cluster error sum, it performs averagely in discerning dissimilar clusters.
This is due to the ‘localized’ nature of the K-family of clustering methods, where there
is a tendency to become ‘stuck’ within a limited vicinity of the initialization point for
most data structures.

3.4 Difference between intra-cluster and inter-cluster error sums

We look also at an overall measure of clustering quality the difference between the
intra-cluster and inter-cluster error sums. Since it is desirable for the former to be
minimized and the latter maximized, an effective and rigorous clustering algorithm
will have a low value for this difference. The results are shown in Fig. 4. Again, the
EP_GOS_Clust is the best performer except for certain regions of low cluster num-
ber, where the K-Medians dominate with its capability to handle outlier data points.
At higher cluster numbers however, the EP_GOS_Clust identifies and isolates these
outlier data points into new clusters and subsequently its clustering performance
overtakes that of the K-Medians.
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Fig. 4 Comparison of the difference between error sums from the clustering of 5,652 yeast genes
based on DNA expression levels in glucose pathway experiments, using different clustering algo-
rithms. Each gene contains 36 time points, or a 24-dimensional feature vector. This comparison allows
an overview of the extent of overall ‘error-ness’ for the clusters formed and should be minimized

3.5 Optimal number of clusters

We compute the optimal number of clusters by applying a suitable weighting factor
to the two error sums and then finding the clustering balance. The EP_GOS_Clust
predicts the lowest number of optimal clusters. From Fig. 5, it can be seen that
EP_GOS_Clust predicts 237 clusters. On the other hand, K-Means and K-Corr, for
instance, predict the optimal number of clusters to be around 700, while K-Medians
puts the number at around 450. Together with the quality of the EP_GOS_Clust from
the previous comparisons, we infer the superior ‘economy’ of the EP_GOS_Clust
in producing tighter data groupings by utilizing a lower number of clusters, as it is
actually possible to achieve tight groupings by using a large number of clusters, even
with an inferior clustering algorithm.

3.6 Coherence and biological relevance

Often the most intuitive and convenient manner of evaluating the robustness of a clus-
tering approach is to visually inspect the cluster tightness. For brevity, Fig. 6 depicts
the expression time course for 6 sample clusters. We use the largest clusters formed, as
well as clusters formed in the later stages of the procedure and smaller-sized clusters
to show good consistency and lack of size-bias. The plots clearly show the tightness
of the clustering throughout. To more conveniently demonstrate the overall tightness
of the clusters uncovered by the EP_GOS_Clust as compared to other methods, we
also find the Pearson correlation coefficients of all the clusters uncovered. Table 1
provides a summary of the cluster correlations, where in particularly the average
correlation coefficient and the standard coefficient reflect the overall tightness for
all clusters. It can be seen that the EP_GOS_Clust compares very well with other
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Fig. 5 Prediction of the optimal number of clusters, as shown by the turning point in the cluster
balance; by different clustering algorithms from the clustering of 5,652 yeast genes based on DNA
expression levels in glucose pathway experiments. Each gene contains 36 time points, or a 24-dimen-
sional feature vector

Table 1 Comparison of cluster correlation from the clustering of 5652 yeast genes based on DNA
expression levels in glucose pathway experiments

Optimal cluster Correlation coefficient
number

Average Maximum Minimum Standard
deviation

(Clustering Method)
EP_GOS_Clust 237 0.617∗ 0.938∗ 0.264∗ 0.128∗
KMedians 445 0.615 0.937 0.197 0.134

KCityBlk 665 0.398 0.760 −0.159 0.149

KCorr 665 0.630∗ 0.931 0.239∗ 0.119∗
KMeans 775 0.614 0.959∗ 0.072 0.131

GOS I 295 0.590 0.933 0.202 0.148

KAvePair 452 0.567 0.909 0.156 0.141

SOTA 540 0.604 0.925 0.378∗ 0.122∗
SOM 485 0.623∗ 0.968∗ 0.202 0.156

The comparison shows the average correlation coefficients across all clusters for each clustering algo-
rithm, the maximum and minimum coefficient, as well as the standard deviation of the coefficients to
give a sense of the spread of correlation displayed by the clusters. The table also shows the optimal
number of clusters predicted by each clustering approach. The shaded row contains the results for
EP_GOS_Clust and the top three performers for each correlation performance indicator is marked
with an asterisk



340 J Glob Optim (2007) 39:323–346

Fig. 6 Gene expression time course plots for 6 sample clusters, found using the EP_GOS_Clust
algorithm

clustering methods in producing highly correlated clusters, even against methods such
as K-Corr that already explicitly uses correlation as a metric for clustering and the
correlation hunting SOM (see Table 1). The data in the table for each clustering
algorithm is obtained at the respective optimal number of clusters predicted by the
clustering balance.

We also evaluate our clusters by performing a functional search using the Gene
Ontology (GO) term finder on the SGD website (http://www.yeastgenome.org). The
biological coherence of each cluster is scored according to the percentage of its genes
covered by annotations significantly enriched in the cluster. From our results, 91%
of the genes group into clusters with p-values under 0.01 and 87% of the genes fall
into clusters with p-values under 0.005, which is a significant indication of clustering
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Fig. 6 continued

quality. Table 2 shows that the EP_GOS_Clust performs well against other clustering
algorithm in obtaining clusters with good overall p-values (expressed as −log10(p)
values in this table) and the proportion of genes that are placed into significantly
coherent clusters, which we consider to be two broad tenets in assessing the strength
of biological coherence. We would like to point out that the EP_GOS_Clust procedure
isolates errant data points as the clustering progresses. Thus, in further analysis of the
clusters we have good justification to consider these data points as being irrelevant.

3.7 Additional constraints for large datasets

It is interesting to note that a close examination of the clustering results within each
GOS iteration reveals that the cluster size distribution does not change significantly
over successive iterations. This suggests that we can analyze the intermediate results
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Fig. 6 continued

from a particular run and introduce additional constraints on the number of clusters
allowable in each size class without significantly compromising on the optimality of
the final solution. Using 1 ≤ ∑n

j=1 wij ≤ n − c + 1 as the constraint for cluster size can
unnecessarily increase the problem size. Hence, we can further tighten the constraint
for cluster size as a plausible strategy for further expediting the clustering of even
larger data sets.

Indexing the new cluster size ranges by l, for l = 1, . . ., d, we introduce a new binary
variable w′

jl, which equals one if cluster j belongs to size class l, and zero if otherwise.
The additional constraints are then formulated as follows:

d∑

l=1

w′
jl = 1, ∀j (15)
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Table 2 Gene Ontology comparison between Clusters found by different clustering approaches

− log10(P) Comparison %Genes (Total 5652)

Average Standard In clusters In clusters with
deviation with − log10(P) values > = 4 − log10(P) values > = 3

(Clustering Method)
EP_GOS_Clust 4.40∗ 0.37 32.82∗ 64.92∗
KMedians 4.27∗ 0.34∗ 30.83∗ 62.23∗
KCityBlk 3.69 0.49 27.53 56.68
KCorr 4.15∗ 0.39 32.59∗ 60.08∗
KMeans 3.45 0.41 25.11 55.20
GOS I 3.84 0.42 28.19 57.75
KAvePair 3.77 0.48 25.18 54.43
SOTA 3.67 0.31∗ 30.20 58.86
SOM 3.94 0.35∗ 30.47 59.24

The table compares the − log10(P) values of the clusters, which reflect the level of annotative richness,
as well as the proportion of yeast genes that fall into biologically significant clusters. The latter is
important in ‘presenting’ the maximal amount of relevant genetic information for follow-up work in
areas such as motif recognition and regulatory network inference. The shaded row contains the results
for EP_GOS_Clust and the top three performers for each performance indicator is marked with an
asterisk

nc − ε ≤
c∑

j=1

w′
jl ≤ nc + ε, ∀l (16)

d∑

l=1

dl,minw′
jl ≤

n∑

i=1

wij ≤
d∑

l=1

dl,maxw′
jl, ∀j (17)

The first set of constraints allows each cluster into only one size class. The second
constraint restricts the number of clusters allowable in each class. The parameter ε

is judiciously picked to allow a reasonable range over the number of clusters in each
class, for instance 10%. Finally, the third constraint bounds the size of the clusters
allowed in each class. These additional constraints also involve the variable wij but
not zjk; hence they are all included into the master problem.

4 Conclusion

In our study, we propose a novel clustering algorithm (EP_GOS_Clust) based on
a Mixed-Integer Nonlinear Programming (MINLP) formulation. We test our pro-
posed algorithm on a substantially large dataset of gene expression patterns from the
yeast Saccharomyces cerevisiae, and show that our method compares favorably (if not
outperforms) with other clustering methods in identifying data points that are the
most similar to one another as well as identifying clusters that are the most dissim-
ilar to one another. We also show that the EP_GOS_Clust is capable of uncovering
tightly correlated clusters. Given the nature of the test datasets, we too show that the
EP_GOS_Clust does well in uncovering clusters with good biological coherence. In
addition, we demonstrate the utility of the pre-clustering procedure and a methodol-
ogy that works in concert with the algorithm itself to predict the optimal number of
clusters. For consistency, we repeated our study on other DNA microarray datasets
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based on the various glucose signaling pathways in the yeast Saccharomyces cerevisiae
(other results not reported here) and obtained similar result trends.
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